

5. ML Career Revival Program

Designed specifically for professionals looking to shift careers or return after a break:

ML Career Revival: Transform Career Breaks into Breakthroughs

Module	Topics	Duration
Module 1: Python for Data Science	<p>Python Basics:</p> <ul style="list-style-type: none"> - Introduction to Python - Data types (int, float, list, tuple, dictionary, set) - Control flow: loops, if-else statements - Functions and Modules - Error handling and exceptions - File handling (reading and writing files) <p>Libraries for Data Science:</p> <ul style="list-style-type: none"> - NumPy, Pandas, Matplotlib, Seaborn for data manipulation and visualization 	20 hours
Module 2: Mathematics for Machine Learning	<p>Linear Algebra:</p> <ul style="list-style-type: none"> - Vectors, Matrices, and Tensors - Matrix operations, Eigenvalues, and Eigenvectors <p>Calculus:</p> <ul style="list-style-type: none"> - Derivatives and Gradients - Optimization techniques (Gradient Descent) <p>Statistics:</p> <ul style="list-style-type: none"> - Descriptive statistics (Mean, Median, Mode, Variance, Std. Dev.) - Probability Theory (Bayes' Theorem, Conditional Probability, Random Variables) - Probability Distributions (Normal, Binomial, Poisson) 	20 hours

Module 3: Data Preprocessing & Visualization	<p>Data Preprocessing:</p> <ul style="list-style-type: none"> - Handling missing data, dealing with outliers, scaling and normalization - Feature engineering and selection <p>Data Visualization:</p> <ul style="list-style-type: none"> - Matplotlib and Seaborn for data visualization - Plot types: Histograms, Boxplots, Scatter Plots, Heatmaps - Visualizing correlations, trends, and distributions 	15 hours
Module 4: Introduction to Machine Learning	<p>Supervised Learning:</p> <ul style="list-style-type: none"> - Linear Regression, Logistic Regression - K-Nearest Neighbours (KNN) - Decision Trees, Random Forests - Support Vector Machines (SVM) <p>Model Evaluation and Metrics:</p> <ul style="list-style-type: none"> - Cross-validation, Confusion Matrix - Accuracy, Precision, Recall, F1-score, AUC-ROC 	20 hours
Module 5: Advanced Machine Learning	<p>Ensemble Methods:</p> <ul style="list-style-type: none"> - Bagging, Boosting (XGBoost, AdaBoost) - Stacking <p>Unsupervised Learning:</p> <ul style="list-style-type: none"> - K-Means Clustering, DBSCAN - Hierarchical Clustering - PCA (Principal Component Analysis) for dimensionality reduction 	20 hours
Module 6: Introduction to Deep Learning	<p>Neural Networks:</p> <ul style="list-style-type: none"> - Perceptron, Activation functions (Sigmoid, Tanh, ReLU) - Feedforward networks, Backpropagation - Optimizers (SGD, Adam) <p>Introduction to CNNs:</p> <ul style="list-style-type: none"> - Convolutional Layers, Pooling Layers 	20 hours

	<ul style="list-style-type: none"> - Architectures: LeNet, AlexNet, VGG 	
Module 7: Advanced Deep Learning	<p>Convolutional Neural Networks (CNNs):</p> <ul style="list-style-type: none"> - Object detection (YOLO, R-CNN) - Transfer Learning with Pretrained Networks - Fine-tuning CNNs for Custom Tasks <p>Recurrent Neural Networks (RNNs):</p> <ul style="list-style-type: none"> - LSTMs, GRUs - Sequence to Sequence Models, Time Series Prediction 	25 hours
Module 8: Natural Language Processing (NLP)	<p>Text Preprocessing:</p> <ul style="list-style-type: none"> - Tokenization, Lemmatization, and Stemming - Word Embeddings: Word2Vec, GloVe - TF-IDF and Bag of Words <p>Advanced NLP Models:</p> <ul style="list-style-type: none"> - LSTM for Text Classification - Transformers, BERT, GPT-2/3 for NLP tasks 	20 hours
Module 9: Reinforcement Learning (RL)	<p>Basics of RL:</p> <ul style="list-style-type: none"> - Markov Decision Processes (MDPs) - Q-learning and Deep Q Networks (DQN) - Policy Gradient Methods - Applications in Game AI, Robotics 	15 hours
Module 10: Model Deployment & Monitoring	<p>Model Deployment:</p> <ul style="list-style-type: none"> - Flask for API development - Docker for containerization - Cloud deployment with AWS/GCP <p>Model Monitoring and Maintenance:</p> <ul style="list-style-type: none"> - Model drift detection 	10 hours

	<ul style="list-style-type: none"> - Logging, version control 	
Module 11: Career Development & Soft Skills	<p>Portfolio Development:</p> <ul style="list-style-type: none"> - Creating a strong GitHub portfolio - Resume Building, LinkedIn Optimization - Soft Skills: Communication, Teamwork, Problem-solving 	5 hours
Total Theory + Lab Hours		150 hours

Project Phase	Details	Duration
Phase 1: Project Selection and Planning	<ul style="list-style-type: none"> - Select project topics: AI in Healthcare, Smart Cities, Finance, E-commerce, etc. - Define problem statement, data collection, and preprocessing steps 	10 hours
Phase 2: Model Development and Experimentation	<ul style="list-style-type: none"> - Apply algorithms from supervised, unsupervised, and deep learning models - Experiment with hyperparameters and fine-tuning 	15 hours
Phase 3: Evaluation and Optimization	<ul style="list-style-type: none"> - Evaluate model performance using metrics (Accuracy, Precision, Recall, AUC) - Improve models using hyperparameter optimization, regularization 	10 hours
Phase 4: Reporting and Final Presentation	<ul style="list-style-type: none"> - Prepare documentation, reports, and visualizations - Prepare and present final project findings and results 	10 hours
Phase 5: Portfolio and Post-Project Support	<ul style="list-style-type: none"> - Create a portfolio on GitHub - Resume and LinkedIn optimization, interview preparation 	5 hours
Total Project Hours		50 hours

